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Abstract-The contour double integral formula for the view factor between a pair of finite surfaces is a 
particularly simple formula to implement numerically. This paper suggests a method to improve the 
accuracy of the numerical results using this formula, both for non-intersecting surfaces, and for intersecting 
surfaces. In the latter case particularly, significant improvements in accuracy are achieved using the 

procedure outlined in the paper. 

INTRODUCTION 

IN THE thermal analysis of enclosures with non-par- 
ticipating intervening media and radiatively inter- 
acting surfaces, the surface radiative properties play 
an important role. The diffuse approximation is the 
most commonly used engineering approximation and 
assumes that the surfaces radiate diffusely. The sur- 
face reflectance model normally chosen is the diffuse 
or diffuse-specular model [I]. In such an analysis, the 
view factor (VF) plays a key role, since it indicates the 
proportion of diffuse radiation leaving a surface which 
reaches some other specified surface by direct radi- 
ative transport. 

Although diffuse VFs represent an approximation 
to real directional behavior, it would be erroneous to 
assume that we could work with inaccurate values of 
VFs. In enclosures such errors would become mag- 
nified, as pointed out by Feingold [2]. Feingold used 
a simple example to illustrate this and concluded: 
“This should dispose of the idea that because real 
surfaces do not adhere exactly to Lambert’s law, and 
because of some other simplifying assumptions which 
are normally made in radiant-interchange calcu- 
lations, we can also afford the luxury of working with 
grossly inexact configuration factors.” 

It would be ideal if analytical solutions existed for 
VFs between any pair of planar diffuse surfaces. This, 
however, is not possible except for a few simple con- 
figurations which are listed in a number of references 
(e.g. ref. [I]). The vast majority of VF computations 
are done numerically. Toups [3] used the Nusselt pro- 
jection method and obtained some reasonably accu- 
rate VFs for simple test configurations. Chung and 
Kim [4] used the Finite Element Method (FEM) to 
evaluate VFs, and illustrated this by evaluating the 
VF between adjoining plates. As we point out, this 
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is an abnormal case and hence Chung’s values are 
significantly in error. Incidentally, as pointed out by 
Feingold [2], the so-called analytic values of Hamilton 
and Morgan [S], quoted by Chung and Kim [4], are 
themselves in considerable error. 

Sparrow [6], in an interesting paper, mathematically 
reduced the standard quadruple integral (double area 
integral) VF formula to the contour double integral 
formula (CDIF). Minning [7] used the CDIF to obtain 
a closed form expression for the VF between parallel 
ring sectors sharing a common center line. Shapiro [8] 
compared the CDIF and the area integral method 
and concluded that the CDIF was significantly more 
accurate than the area integral method. Mathsiak [9]. 
obtained an efficient algorithm based on the CDIF 
for determining VFs for plane polygonal areas. 
McAdam ef al. [IO] used the CDIF formula for 
determining shape factors applicable to greenhouses. 
In spite of these applications, it appears, from a survey 
of the literature, that there has been no attempt to 
use the CDIF for ‘accurate’ determination of VFs 
between surfaces with arbitrary relative orientations. 
The motivation for the present study was indeed a 
desire to determine VFs accurate to at least five sig- 
nificant digits and this has been accomplished. 

VIEW FACTORS BY CDIF 

Sparrow [6] has shown that the VF between two 
surfaces is given by 

In (S) dr, *dr,, (1) 

where c, and c2 represent the contours bounding the 
surfaces A , and A2 respectively, dr , and dr2 represent 
elemental lengths on the contours c, and c2 respec- 
tively, and ‘S’ is the distance between these elements. 
The VF is evaluated numerically using formula (l), by 
replacing the double integral with double summation 
using quadratures. The desired accuracy is achieved 
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NOMENCLATURE 

A, B, C,. . . , constants 
Ai area of ith surface 
Ci ith contour 

T Romberg/modified Romberg 
matrix. 

D distance between contours 
Fi-, view factor from surface i to surfacej 

Greek symbols 

hi step size during ith trapezoidal 6.4 x and y increments along contour 

inteeration 
E error in the CDIF. 

i:j .Y and y direction unit vectors 
L length of the side Subscripts 
ri position vector of the ith contour C common edge 
s distance between elements on different S side of polygon 

contours sh shortest side of either contour. 

by the use of the Romberg method [I I]. The following 
two configurations need different procedures to be 
adopted and hence are considered separately. These 
are 

(a) the two surfaces do no intersect ; 
(b) the two surfaces intersect, thus sharing a com- 

mon edge. 

Non-intersecting contours 
The Romberg method is well known and consists 

of obtaining an estimate for the value of an integral 
in the limit as the step size tends to zero. For the 
present calculations, the procedure consists of obtain- 
ing trapezoidal rule estimates with step lengths h,, hJ2, 
hJ4,. . . , on either contour. Then a matrix T(m,n) is 
created, where m is the column number and n is the 
row number. The Romberg extrapolation formula is 
[I 11 
T(m,n) = T(m-l,n+l) 

+{T(m-l,n+l)-T(m-l,n)}/(4”‘-1). (2) 

T(i, n) corresponds to T(h,), where h,, = hi/2”‘- I). The 
elements of T(m,n) represent subsequent extra- 
polations, with T(n, 1) being the best extrapolation 
corresponding to T(i,n). The order of magnitude of 
the error is h$ and, thus, for small hi, convergence is 
assured. 

The above method is applied to the case of VFs 
between non-intersecting planar polygonal contours, 
for which a computer program in Fortran 77 was 
developed. The case of VFs calculated using this pro- 
gram, between the ends of a cylinder with regular 
polygonal cross-section, are compared with those 
obtained ‘analytically’ by Feingold [2] (these represent 
the most accurate values reported in the literature) in. 
Table 1. The present calculations were all performed 
using double precision arithmetic using a Siemens 
main frame computer. For the triangle, square and 
pentagon, the present results compare favorably with 
Feingold’s (i.e. up to five significant figures). For the 
hexagon and octagon, the present values differ con- 

siderably from Feingold’s for the cases shown in italic. 
The values calculated using the method outlined in 
the present work can be guaranteed to at least six 
significant figures, as will be shown later. The error 
must lie in Feingold’s values since his values were 
obtained using VF algebra. Thus, his values were 
exposed to the same error he had cautioned against. 
To validate the values obtained as described above, 
the VF from an octagon to the side was calculated. 
The side is a rectangle with one edge common with a 
side of the octagon, and height equal to the distance 
between the octagons. Since the rectangle and octagon 
intersect, the VF between them was evaluated using 
the method to be presented later in the paper. The 
octagon-octagon VF was then calculated using VF 
algebra. The results concurred up to the fifth decimal 
place (Table 1). Error in subsequent places is due to 
the lower precision of the VF between the intersecting 
surfaces, namely the octagon and the rectangle. 

As a typical example, the Romberg matrix for the 
octagon case is shown in Table 2. For this case hi is 
taken as L,/S, where L, is the length of a side of the 
figure. Six trapezoidal integrations were carried out 
based on the CDIF. The subsequent extrapolations 
are so efficient that trapezoidal integration need only 
be carried out for hi, hi/2 and hi/4 in this case, further 
calculation being redundant for seven significant 
figure accuracy. It was found that for regular poly- 
gons, no more than five trapezoidal integrations were 
needed to obtain the stated accuracy with hi = L,/5. 

This technique can also be applied to planar curved 
contours whose contour equation is known. However, 
the contour must be discretized with equal sized 
elements by the procedure given below, in order to 
use the Romberg procedure. 

Discretization of an arbitrary planar curved contour 

f(& Y) = 0 
The contour is discretized (in a coordinate system 

where the x,y plane contains the contour) into 
elements of length h, as follows. At some starting 
point on the contour we draw a circle of radius h,. 
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The point of intersection of this circle with the contour 
and its center form the end points of the element. The 
initial hi value must be about one-fifth the smallest 
radius of curvature of the contour so as to accurately 
discretize it. 

The equation of the discretizing circle centered at a 
point (a, b) on the contour is 

(X-a)*+(y-b)* = h,2. (3) 

Let the tangent to the contour at (a,b) intersect the 
discretizing circle at (x,,y,) and let 6, =x,-a, 
4, = y , -b. Since the tangent line will intersect the 
circle at two diametrically opposite points, (6 ,, C$ ,) are 
chosen such that (Vfx (6 ,î + d, ,ĵ )) is always the same 
sign, so that the discretizing circle creeps over the 
contour in one direction only (see Fig. 1). Let (6 ,, C#J ,) 
be the initial solution for the point of intersection of 
the circle with the contour, and let (a2, c#J*) be a better 
approximation such that : 

62 = 6, +g 

1 42=4,+k ’ (4) 

where g and k are very small compared to 6, and c$, 
respectively. Thus by equation (3) : 

(6, +g)‘+(d, +k)* = h,f. 

Now by a Taylor series expansion : 

(5) 

+ 42 8$‘ld~&,, + higher order terms. 

Assuming that the point specified by equation (4) lies 
on the contour, and f(u, b) = 0, we would have : 

Solving equations (5) and (6) simultaneously, g and k 
are obtained, from which we get h2 and c$*. Replacing 
(S,,$,) with (6,,4,), we can continue this process 
until convergence. Assuming that (m - 1) iterations 
are needed, we obtain (6,, &J, and the next point on 
the contour will be (a + a,,, b + 8,). 

This method is useful for second and higher order 
curves. Linear contours (i.e. polygons) can be dis- 
cretized in a much more straightforward manner by 
taking equal sized steps along a side starting from a 
corner. 

As a test case, the above method of discretization 
coupled with the Romberg procedure was used to 
evaluate the VF between co-axial circles of equal 
diameter, a distance D apart, that circumscribe equi- 
lateral triangles of side L. Table 3 shows these cal- 
culations for a wide range of values of the ratio L/D. 
The exact value is obtained from the formula given in 
ref. [l]. It appears that Feingold [2] has rounded his 
results to six decimal places. There is a remarkably 
good agreement (at least six significant digits) between 
the present calculation and the exact values. 
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Table 2. Romberg matrix for view factor between regular octagons of equal size 

0.6707516 
T(l, 1) 

0.6692855 
T(1,2) 

0.6689208 
T(l, 3) 

0.6688298 
T(l,4) 

0.6688070 
VI, 5) 

0.6688013 
T(1,6) 

0.6687968 
W, 1) 

0.6687993 
T(2,3) 

0.6687994 
T(2,3) 

0.6687994 
T(2,4) 

0.6687994 
7-Q. 5) 

0.6687994 0.6687994 0.6687994 0.6687994 
T(3,1) T(4. 1) T(5,l) T(6,1) 

0.6687994 0.6687994 0.6687994 
T(3,2) T(4.2) T(5,2) 

0.6687994 0.6687994 
T(3.3) T(4,3) 

0.6687994 
T(3.4) 

Side to distance ratio = 2. hi = (length of side)/5. T(m, n) are the Romberg matrix values, where T(m, n) 
is given by equation (2). 

Intersecting contours 
Two planar contours always intersect on a straight 

line (Fig. 2). It is clear from the CDIF that when 
S = 0 (i.e. along the common edge), there will be a 
logarithmic singularity in the integrand (i.e. In (0)). 

Equation (1) is evaluated by moving along the 
respective contours c, and c2. While moving along 
the common edge on both contours we are bound to 
encounter the singularity. A simple formula is given 
below for the CDIF along any straight common edge. 

Clearly the CDIF along the common edge is (see 
Fig. 3) 

f-C 

I s 

4 
E = -(1/{2nA,}) In Ix1 -A b, d-+ (7) 

x,=0 .x2= 0 

This is integrated analytically to yield 

E = -(1/{2nA,})L,Z{ln (L,)- l.S}. (8) 

To find the VF between two intersecting contours 
we use the previously mentioned Romberg method. 
However, the integral along the common edge is not 

FIG. I. A curved contour with the discretizing circle drawn 
thereon. 

Table 3. Comparison of VFs between equal parallel circles 
as described in the text 

LID Present study Feingold [2] Exact [I] 

0.1 0.003311295 0.003315 0.003311295 
1.0 0.2087 122 0.208712 0.2087121 
2.0 0.43 12707 0.431271 0.4312707 

10.0 0.8411466 0.841147 0.8411466 

evaluated numerically. The basic values (T(h) in Table 
4) represent the CDIF, excluding the integral along 
the common edge. The correction E is then added 
to the best Romberg extrapolation based on T(hJ, 
T(hi/2), etc. to get the required VF. 

Consider the case of two square plates intersecting 
along an edge and having an included angle of 30”. 
The Romberg matrix for this case, along with the 
correction E, is shown in Table 4. This case was 
handled by Chung and Kim [4] using the FEM and 

FIG. 2. An example of adjoining planar polygonal plates. 
Arrows show the direction of travel along respective con- 

tours. 
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FIG. 3. Common edge showing the variables x, and x2, 
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Table 4. Romberg matrix for the VF between two adjoining square plates with an included angle of 30” 

0.7475610 0.7468307 0.7467771 0.7467669 0.7467644 0.7467639 
0.7470133 0.7467805 0.7467670 0.7467645 0.7467639 
0.7468387 0.7467679 0.7467645 0.7467639 
0.7467856 0.7467647 0.7467639 
0.7467699 0.7467639 
0.7468654 

L, = 10, h, = I. Correction E = -0.1277353. The correction E is added to T(6, I) to get a VF of 0.619029. 

Table 5. Comparisons of VFs determined by various methods between two adjoining square plates at 
various included angles to each other 

Angle (“) 

Author (method) 30 60 90 120 150 

Feingold [2] (Exact) 
Present (CDIF) 
Hamilton and Morgan [5] 
Toups [3] 

(Nusselt projection 
method-60 x 60 grid) 

Chung and Kim [4] 
(FEM40 x 40 mesh) 

0.619028 0.370905 0.200044 0.086615 0.021346 
0.619029 0.370906 0.200044 0.086615 0.021345 
0.6202 0.3712 0.20004 0.0870 0.0215 
0.61878 0.08662 

0.68786 0.38133 0.20255 0.08729 0.02147 

they obtained a value of 0.68786 with a 40 x 40 mesh 
(see bold faced entries in Table 5). However, Feingold 
[2] obtained a value of 0.619029 for the same problem, 
using the analytical formulae derived for this case by 
Hamilton and Morgan [5]. Using the CDIF coupled 
with the Romberg procedure discussed above, a value 
of 0.619029 was obtained with h, = L,/lO and six basic 
integrations. The sixth basic integration covered 1280 
elements along both contours. Contrast this with the 
1600 (40 x 40) area elements in Chung’s case. Not only 
is the present method general (it will evaluate the VF 
between any two planar contours whether or not they 
are intersecting), it is also far simpler to implement 
than an FEM routine. In Table 5 a comparison is also 
given with the data of Hamilton and Morgan [S] and 
Toups [3] for various included angles between two 
adjoining square plates. In all cases the present cal- 
culations are seen to be in excellent agreement with 
the values given in ref. [2], which may be taken as a 
basis for comparison since they are obtained from an 
analytically derived formula. In view of this the results 
obtained by the other authors quoted are all in error 
to different extents. The FEM value of Chung seems 
to be the worst. 

APPLICATION TO A SAMPLE ENCLOSURE 

In order to demonstrate further the usefulness of 
the present CDIF formulation, we present below a 
VF algebra analysis for the enclosure shown in Fig. 
4. The top to bottom VF (i.e. FS-J was calculated 
using hi = 1. Six trapezoidal integrations were carried 
out. It was found that with just T(hJ and T(hi/2), a 
convergence to seven significant figures was obtained, 
further calculations being redundant. The VF for this 
case is 0.6698614. For the top to side case we obtained 

a VF of F,. , (or F,,, F,_,, F,,) = 0.082534 using 
the method applicable to intersection contours. Here 
six significant figures were taken because a com- 
parison of T(5,l) and T(6,l) showed agreement only 
up to the fifth place. A study of the best extrapolations 
after the fourth, fifth and sixth (i.e. T(4, l), T(5, 1) 
and T(6, I), respectively) basic integrations suggests 
that further basic integration coupled with the 
Romberg procedure would cause a change of f 1 in 
the sixth decimal place. By VF algebra the top to side 
VF is (1.0000000-0.6698614)/4 = 0.0825346. We note 
here that by the two different methods we get a VF 
of 0.08253 if we round off to five decimal places. 
Considering six decimal places we get a value of 

2 

El 3 5 1 

4 

‘Length = 10 

5 -Jop=(lOx 10) 

6 \ 
Bottom (20 x 20) 

FIG. 4. A sample enclosure consisting of six sides. The VFs 
include those for non-intersecting as well as intersecting 

areas. 
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F,, = 0.082534+ 1.0 x 10Y6. Clearly an idea of 
the accuracy of the VF can be gleaned from observa- 
tion of the Romberg matrix. 

CONCLUSION 

It is clear that evaluating the VF using the CDIF 
with the trapezoidal rule coupled with Romberg extra- 
polation yields very accurate values. The method is 
very simple to implement and an error estimate can be 
made by observing the best extrapolates, i.e. T(1, I), 
T(2, l), T(3, I), etc. The method is convergent [I I] 
with diminishing step size. 

A simple formula giving the value of the CDIF 
along the intersecting line was derived for intersecting 
areas. The VFs so calculated compare well with values 
computed using VF algebra. The method is also 
capable of giving very accurate values of the VF for 
areas bounded by curved contours. 
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